HONEYCRISP
EMULATOR

Technical Documentation

Version 1.1 || © 2025 Landon Smith

HoneyCrisp Emulator | Technical Documentation

TABLE OF CONTENTS
Introduction................ Page 1
HoneyCrisp System Architecture......... Page 2
Primary Technical Specifications......... Page 3
ROM Components......................... Page 4
Userinterface..........................l. Page 6
Program Loading........................... Page 7
SourceCode...........cccvviiiiiiiin.. Page 7

License and Attribution................ Page 8

HoneyCrisp Emulator Technical Documentation Page 3 of 10

HoneyCrisp Emulator: Technical Documentation

Version 1.1 | Author: Landon Smith | Date: October 23rd, 2025

Welcome to the official technical documentation for The HoneyCrisp Emulator. This document
is your guide to understanding the inner workings of this APPLE-1 emulator. It covers a variety
of topics concerning the technicalities of the emulation system and using the system for the
first time.

1. Introduction

The HoneyCrisp Emulator is a browser-based recreation of the original APPLE-1
microcomputer designed by Steve Wozniak in 1976. This manual provides
comprehensive documentation for developers, historians, and hobbyists who desire to
understand this emulator within a greater scope.

1.1 Purpose

This emulator serves a primary purpose of being an educational tool for the people
who wish to experiment with and learn about the first Apple computer, while also
providing a test bed environment for hobbyist developers to easily build and run
programs.

1.2 Design Philosophy

The HoneyCrisp Emulator prioritizes authentic hardware accuracy over emulation
performance shortcuts. It implements cycle-accurate CPU instruction execution,
original video display characteristics, proper timing mechanisms for I/O operations,
and more.

1.3 Emulation Requirements

To efficiently experience and operate an APPLE-1 using HoneyCrisp, it is
recommended that your system meets the following requirements:

- A modern web-browser with HTML 5.0 and JavaScript ES6 support.
- A keyboard for input operations.
- A stable connection to the internet

If you have a slower internet connection, there’s no need to worry. The HoneyCrisp
Emulator is fully contained within one file of 50 kilobytes in size, making for a fast and
easy experience on most connection types.

Section 2 of this documentation covers the system architecture of The HoneyCrisp
Emulator. It includes detailed information about the specifications that are emulated
and breaks down the specifications individual steps/components.

HoneyCrisp Emulator Technical Documentation Page 4 of 10

2. HoneyCrisp System Architecture

2.1 MOS Technology 6502 CPU Emulation

At the core of The HoneyCrisp Emulator lies a complete MOS Technology 6502 CPU
emulator implemented within the JavaScript source code as the CPU6502 class. This
class that contains the CPU emulator includes the following:

2.1.1 Register Implementations
All MOS 6502 registers are implemented as JavaScript properties.

- A........ Accumulator (8-bit)

= XYeieeeens Index Registers (8-bit each)

i o O Program Counter (16-bit)

iR - Stack Pointer (8-bit)

- CZI,D,B,VN........... Status Flags (1-bit each)

2.1.2 Instruction Execution

The step() JavaScript function (within the source-code) executes one instruction per
call by performing the following operations:

Fetch opcode from memory at PC

Increment the PC

Decode opcode using an instruction map

Execute the corresponding operation

Update the cycle count

Check for and apply page crossing penalties

A e

2.2 Memory Map

Below is a table that contains information about the memory mapping of The
HoneyCrisp Emulator. Address ranges shown here are identical to the original
hardware.

ADDRESS RANGE SIZE DESCRIPTION
$0000-$0FFF Default of 4K-bytes Emulated memory’s
(Expandable to 8K-bytes) ZERO-PAGE
$C100-C1FF 256 bytes Apple Cassette Interface ROM
$E000-$EFFF 4K-bytes Integer BASIC ROM

$FF00-$FFFF 256 bytes Relative System Monitor

HoneyCrisp Emulator Technical Documentation Page 5 of 10

2.2.1 1/0 Registers

$D010 - Keyboard data input (bit 7 = ready flag)
$D011 Keyboard status (bit 7 = data available)
$D012 Display Output Register

$D013 Display Control

2.2.2 Memory Access Methods

The read(addr) and write (addr, val) operations handles all memory access,
implementing proper I/0 mapping, RAM read/write functions, and ROM write
protection.

2.3 Video Display System

The video subsystem emulates the APPLE-1’s 40-column by 24-row character display
using a virtual frame buffer.

2.3.1 Display Architecture

= Screen Buffer: 2D Array (40 columns by 24 rows)

= Cursor (@) Tracking: X and Y coordinates

= Scrolling: Automatic when last value of Y is reached. (as per the original hardware)
= Rendering: TTF character-based rendering. No bitmaps were used to save space.

2.3.2 Character Set
HoneyCrisp uses a custom font, reproducing the Signetics 2513 character ROM,
limiting the font to a set of 64 characters, as per the original hardware.

= Uppercase Letters: A-Z

- Digits: 0-9

- Special Characters: @ [\]" _'#$% &‘()*+,-./:;<=>"?
Blank Space (BLSP)

2.3.3 Cursor Blink Interval
The relative system monitor (WOZMON) prompt cursor (@) blinks in 530ms intervals,
matching the original hardware behavior. This is implemented via setinterval() calling
the renderScreen() function.

3. Primary Technical Specifications

3.1. Instruction Set Implementation

HoneyCrisp implements all 151 documented 6502 opcodes plus common
undocumented opcodes. Not all operation codes used are listed within this manual for
brevity. The table on page six lists some of these opcodes.

HoneyCrisp Emulator

3.1.1 Documented Instructions

Technical Documentation

Category Opcodes

Load/Store LDA, LDX, LDY, STA, STX, STY
Transfer TAX, TXA, TAY, TSX, TXS

Stack PHA, PLA, PHP, PLP
Arithmetic ADC, SBC, INC, INX, INY, DEC, DEX, DEY
Logic AND, ORA, EOR

Shift ASL, LSR, ROL, ROR

Compare CMP, CPX, CPY, BIT

Brach BCC, BCS, BEQ, BNE, BMI, BPL, BVC, BVS
Jump JMP, JSR, RTS, RTI

Flag CLC, SEC, CLlI, SEl, CLV, CLD, SED
System BRK, NOP

3.1.2 Undocumented Instructions

Category Opcodes

Load/Store Combos LAX, SAX

Decrement/Increment Combos DCP, ISP

Shift/Rotate Combos

SLO, RLA, SRE, RRA

Accumulator Ops

ANC, ALR, ARR, XAA, AXS

Store High Byte

SHY, SHX

3.1.3 Addressing Modes

All 13 standard 6502 addressing modes are implemented including:
Immediate, Zero Page, Absolute, Indirect, Relative, and all indexed variations.

Page 6 of 10

HoneyCrisp Emulator Technical Documentation Page 7 of 10

3.2 Cycle Timing
HoneyCrisp implements cycle-accurate timing for all instructions executed.
The cycleTable array stores the base cycle count for each opcode.

3.2.1 Timing Accuracy

= Base cycles are pulled from a 256-entry lookup table.

= Page crossing penalties are added automatically.

Branch taken penalties are calculated (+1 cycle, +2 if page is crossed).
A total cycle counter tracks the emulation’s progress.

3.2.2 Execution Throttling

The tick(timestamp) function runs continuously via requestAnimationFrame(), executing
16,667 (or more, depending on CPU Speed turboMultiplier value) per frame to
approximate the original 1MHz operation at 60 fps.

3.3 I/0 Handling

3.3.1 Keyboard Input (Breakdown)

Keyboard input is buffered in the _kbdBuf array.

= All typed characters are converted to uppercase for font compatibility.
ASCII codes received are OR’d with $80 (bit 7 is set)

Reading $D010 returns a character and clears the buffer array.
Reading $D011 returns $80 is a character is available.

3.3.2 Display (Terminal) Output

Character output is handled through the _videoHook

= Writing to $D012 triggers output

= The character is masked to 7-bit ASCII

= Output is queued in videoOutputQueue and rate-limited to a value set by
default or the turboMultiplier.

- A carriage return, $0D triggers a newline.

4. ROM Components
4.1 System Monitor (WOZMON)

The system monitor, WOZMON (or Wozniak Monitor) provides an environment for
programming the APPLE-1.

Location: $FF00-$FFFF

Commands: - Examine Memory Address: (AAAA)
- Modify Memory Address Contents: (AAAA: BB CC...)
- Run Programs at Address: (AAAA R)

HoneyCrisp Emulator Technical Documentation Page 8 of 10

4.2 Integer BASIC

Apple Integer BASIC provides a high-level programming environment.

Location: $E000-$EFFF

Features: Integer-only arithmetic, 26 available variables (A-Z), arrays (DIM),

loops (FOR/NEXT), subroutines (GOSUB/RETURN) and memory access (PEEK/POKE).
Activation: To enter Integer BASIC, type EOOOR from the system monitor.

5. User Interface

5.1 Hardware Control Buttons

HARD RESET: Clears RAM, resets CPU registers, and un-initializes VRAM

SOFT RESET: Resets the system to WOZMON, preserving memory contents.

CLEAR SCREEN: Erases characters on the display without changing the system state.
BREAK: Interrupts an Integer BASIC program. (Only applicable to $E000-$EFFF)
FULLSCREEN: Enlarges the terminal display for easier viewing.

Hardware operation shortcuts are implemented as key-binds for fullscreen mode.

SOFT-RESET: Control+S, BREAK: Control+C, PASTE: Control/CMD+V
HARD-RESET: Control+H, CLEAR-SCREEN: Control+W,
FULLSCREEN TOGGLE: Control+F

5.2 Memory Configuration

Radio buttons allow the user to configure the memory size between

4K-bytes ($0000-$0FFF) and 8K-bytes ($0000-$1FFF). If memory configuration is
changed, the system will automatically hard-reset.

5.3 MOS 6502 CPU Speed

Under the memory configuration are two radio buttons. These radio buttons allow a
user to configure the execution speed of the CPU with Normal or Fast.

Normal Execution Speed = 16,667 cycles
Fast Execution Speed = 16,667 cycles by 10 times

6. Program Loading

6.1 File Formats

HoneyCrisp v1.1 has support for three program file types:

= .hc (Standard HoneyCrisp format)

- .bas (BASIC file format. Usually contains BASIC program source code)

- .txt (Standard text file format. Can also be used for BASIC program loading.)

Examples of each format mentioned are listed below.

HoneyCrisp Emulator Technical Documentation Page 9 of 10

Example of .hc:

0300 (starting address)

: A9 4C 20 EF FF A9 0D 20 EF FF

: A9 41 20 EF FF A9 0D 20 EF FF (Contents for the address and subsequents)
: A9 4E 20 EF FF A9 44 20 EF FF

Example of .bas/.txt — Simply just raw source-code.

0 DIM A$(5) : PRINT : PRINT

10 INPUT “WHAT’S YOUR NAME”,A$
20 PRINT “HELLO, “;A$

30 END

6.2 Loading Procedure

The user clicks the browse button labeled "Load a Program" and selects a supported
file. A parser reads the file, and depending on the file type, either:

A, .hc format: Sets the memory pointer based on the address lines, and writes the data
bytes into the specified memory address.

B, .bas/.txt: These file types are automatically assumed to contain BASIC program
source-code. As such, when they are loaded, the emulator automatically injects E 0 0 R,
waits approximately two seconds, and proceeds to inject the code from the file into the
interpreter.

After injection, a user can type RUN to start the loaded program.

7. Source Code

The HoneyCrisp emulator source code is available for download on GitHub.
The repository includes versions 1.0 and 1.1 of the emulator.

Use a web-browser to download the source code at the following address.
https://github.com/landonjsmith/honeycrisp

8. License and Attribution
8.1. MIT License

Copyright © 2025 Landon James Smith

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without 1limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions: The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.THE SOFTWARE IS PROVIDED "AS IS",

http://github.com/landonjsmith/honeycrisp

HoneyCrisp Emulator Technical Documentation Page 10 of 10

WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

8.2. Acknowledgments/Thanks

e Steve Wozniak - Original Apple-1 hardware/software design

e 6502 CPU designers Chuck Peddle, Rod Orgill, and Wil Mathys at MOS Technology
e San Bergmans at www.sbprojects.net for his extensive Apple-1 documentation

e Will Scullin’s APPLE-1JS as inspiration for the development of this emulator.

e Jeff Jetton for pointing out significant inaccuracies of v1.0

8.3. Contact Information

For questions, bug reports, or suggestions, please contact landon@producerjason.com.

